Files
srdb/btree.go
bourdon 23843493b8 重构代码结构并添加完整功能
主要改动:
- 重构目录结构:合并子目录到根目录,简化项目结构
- 添加完整的查询 API:支持复杂条件查询、字段选择、游标模式
- 实现 LSM-Tree Compaction:7层结构、Score-based策略、后台异步合并
- 添加 Web UI:基于 Lit 的现代化管理界面,支持数据浏览和 Manifest 查看
- 完善文档:添加 README.md 和 examples/webui/README.md

新增功能:
- Query Builder:链式查询 API,支持 Eq/Lt/Gt/In/Between/Contains 等操作符
- Web UI 组件:srdb-app、srdb-table-list、srdb-data-view、srdb-manifest-view 等
- 列选择持久化:自动保存到 localStorage
- 刷新按钮:一键刷新当前视图
- 主题切换:深色/浅色主题支持

代码优化:
- 使用 Go 1.24 新特性:range 7、min()、maps.Copy()、slices.Sort()
- 统一组件命名:所有 Web Components 使用 srdb-* 前缀
- CSS 优化:提取共享样式,减少重复代码
- 清理遗留代码:删除未使用的方法和样式
2025-10-08 23:04:47 +08:00

413 lines
10 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package srdb
import (
"encoding/binary"
"os"
"slices"
"sort"
"github.com/edsrzf/mmap-go"
)
const (
BTreeNodeSize = 4096 // 节点大小 (4 KB)
BTreeOrder = 200 // B+Tree 阶数 (保守估计叶子节点每个entry 20 bytes)
BTreeHeaderSize = 32 // 节点头大小
BTreeNodeTypeInternal = 0 // 内部节点
BTreeNodeTypeLeaf = 1 // 叶子节点
)
// BTreeNode 表示一个 B+Tree 节点 (4 KB)
type BTreeNode struct {
// Header (32 bytes)
NodeType byte // 0=Internal, 1=Leaf
KeyCount uint16 // key 数量
Level byte // 层级 (0=叶子层)
Reserved [28]byte // 预留字段
// Keys (variable, 最多 256 个)
Keys []int64 // key 数组
// Values (variable)
// Internal Node: 子节点指针
Children []int64 // 子节点的文件 offset
// Leaf Node: 数据位置
DataOffsets []int64 // 数据块的文件 offset
DataSizes []int32 // 数据块大小
}
// NewInternalNode 创建内部节点
func NewInternalNode(level byte) *BTreeNode {
return &BTreeNode{
NodeType: BTreeNodeTypeInternal,
Level: level,
Keys: make([]int64, 0, BTreeOrder),
Children: make([]int64, 0, BTreeOrder+1),
}
}
// NewLeafNode 创建叶子节点
func NewLeafNode() *BTreeNode {
return &BTreeNode{
NodeType: BTreeNodeTypeLeaf,
Level: 0,
Keys: make([]int64, 0, BTreeOrder),
DataOffsets: make([]int64, 0, BTreeOrder),
DataSizes: make([]int32, 0, BTreeOrder),
}
}
// Marshal 序列化节点到 4 KB
func (n *BTreeNode) Marshal() []byte {
buf := make([]byte, BTreeNodeSize)
// 写入 Header (32 bytes)
buf[0] = n.NodeType
binary.LittleEndian.PutUint16(buf[1:3], n.KeyCount)
buf[3] = n.Level
copy(buf[4:32], n.Reserved[:])
// 写入 Keys
offset := BTreeHeaderSize
for _, key := range n.Keys {
if offset+8 > BTreeNodeSize {
break
}
binary.LittleEndian.PutUint64(buf[offset:offset+8], uint64(key))
offset += 8
}
// 写入 Values
if n.NodeType == BTreeNodeTypeInternal {
// Internal Node: 写入子节点指针
for _, child := range n.Children {
if offset+8 > BTreeNodeSize {
break
}
binary.LittleEndian.PutUint64(buf[offset:offset+8], uint64(child))
offset += 8
}
} else {
// Leaf Node: 写入数据位置
for i := 0; i < len(n.Keys); i++ {
if offset+12 > BTreeNodeSize {
break
}
binary.LittleEndian.PutUint64(buf[offset:offset+8], uint64(n.DataOffsets[i]))
offset += 8
binary.LittleEndian.PutUint32(buf[offset:offset+4], uint32(n.DataSizes[i]))
offset += 4
}
}
return buf
}
// UnmarshalBTree 从字节数组反序列化节点
func UnmarshalBTree(data []byte) *BTreeNode {
if len(data) < BTreeNodeSize {
return nil
}
node := &BTreeNode{}
// 读取 Header
node.NodeType = data[0]
node.KeyCount = binary.LittleEndian.Uint16(data[1:3])
node.Level = data[3]
copy(node.Reserved[:], data[4:32])
// 读取 Keys
offset := BTreeHeaderSize
node.Keys = make([]int64, node.KeyCount)
for i := 0; i < int(node.KeyCount); i++ {
if offset+8 > len(data) {
break
}
node.Keys[i] = int64(binary.LittleEndian.Uint64(data[offset : offset+8]))
offset += 8
}
// 读取 Values
if node.NodeType == BTreeNodeTypeInternal {
// Internal Node: 读取子节点指针
childCount := int(node.KeyCount) + 1
node.Children = make([]int64, childCount)
for i := range childCount {
if offset+8 > len(data) {
break
}
node.Children[i] = int64(binary.LittleEndian.Uint64(data[offset : offset+8]))
offset += 8
}
} else {
// Leaf Node: 读取数据位置
node.DataOffsets = make([]int64, node.KeyCount)
node.DataSizes = make([]int32, node.KeyCount)
for i := 0; i < int(node.KeyCount); i++ {
if offset+12 > len(data) {
break
}
node.DataOffsets[i] = int64(binary.LittleEndian.Uint64(data[offset : offset+8]))
offset += 8
node.DataSizes[i] = int32(binary.LittleEndian.Uint32(data[offset : offset+4]))
offset += 4
}
}
return node
}
// IsFull 检查节点是否已满
func (n *BTreeNode) IsFull() bool {
return len(n.Keys) >= BTreeOrder
}
// AddKey 添加 key (仅用于构建)
func (n *BTreeNode) AddKey(key int64) {
n.Keys = append(n.Keys, key)
n.KeyCount = uint16(len(n.Keys))
}
// AddChild 添加子节点 (仅用于内部节点)
func (n *BTreeNode) AddChild(offset int64) {
if n.NodeType != BTreeNodeTypeInternal {
panic("AddChild called on leaf node")
}
n.Children = append(n.Children, offset)
}
// AddData 添加数据位置 (仅用于叶子节点)
func (n *BTreeNode) AddData(key int64, offset int64, size int32) {
if n.NodeType != BTreeNodeTypeLeaf {
panic("AddData called on internal node")
}
n.Keys = append(n.Keys, key)
n.DataOffsets = append(n.DataOffsets, offset)
n.DataSizes = append(n.DataSizes, size)
n.KeyCount = uint16(len(n.Keys))
}
// BTreeBuilder 从下往上构建 B+Tree
type BTreeBuilder struct {
order int // B+Tree 阶数
file *os.File // 输出文件
offset int64 // 当前写入位置
leafNodes []*BTreeNode // 叶子节点列表
}
// NewBTreeBuilder 创建构建器
func NewBTreeBuilder(file *os.File, startOffset int64) *BTreeBuilder {
return &BTreeBuilder{
order: BTreeOrder,
file: file,
offset: startOffset,
leafNodes: make([]*BTreeNode, 0),
}
}
// Add 添加一个 key-value 对 (数据必须已排序)
func (b *BTreeBuilder) Add(key int64, dataOffset int64, dataSize int32) error {
// 获取或创建当前叶子节点
var leaf *BTreeNode
if len(b.leafNodes) == 0 || b.leafNodes[len(b.leafNodes)-1].IsFull() {
// 创建新的叶子节点
leaf = NewLeafNode()
b.leafNodes = append(b.leafNodes, leaf)
} else {
leaf = b.leafNodes[len(b.leafNodes)-1]
}
// 添加到叶子节点
leaf.AddData(key, dataOffset, dataSize)
return nil
}
// Build 构建完整的 B+Tree返回根节点的 offset
func (b *BTreeBuilder) Build() (rootOffset int64, err error) {
if len(b.leafNodes) == 0 {
return 0, nil
}
// 1. 写入所有叶子节点,记录它们的 offset
leafOffsets := make([]int64, len(b.leafNodes))
for i, leaf := range b.leafNodes {
leafOffsets[i] = b.offset
data := leaf.Marshal()
_, err := b.file.WriteAt(data, b.offset)
if err != nil {
return 0, err
}
b.offset += BTreeNodeSize
}
// 2. 如果只有一个叶子节点,它就是根
if len(b.leafNodes) == 1 {
return leafOffsets[0], nil
}
// 3. 从下往上构建内部节点
currentLevel := b.leafNodes
currentOffsets := leafOffsets
level := 1
for len(currentLevel) > 1 {
nextLevel, nextOffsets, err := b.buildLevel(currentLevel, currentOffsets, level)
if err != nil {
return 0, err
}
currentLevel = nextLevel
currentOffsets = nextOffsets
level++
}
// 4. 返回根节点的 offset
return currentOffsets[0], nil
}
// buildLevel 构建一层内部节点
func (b *BTreeBuilder) buildLevel(children []*BTreeNode, childOffsets []int64, level int) ([]*BTreeNode, []int64, error) {
var parents []*BTreeNode
var parentOffsets []int64
// 每 order 个子节点创建一个父节点
for i := 0; i < len(children); i += b.order {
end := min(i+b.order, len(children))
// 创建父节点
parent := NewInternalNode(byte(level))
// 添加第一个子节点 (没有对应的 key)
parent.AddChild(childOffsets[i])
// 添加剩余的子节点和分隔 key
for j := i + 1; j < end; j++ {
// 分隔 key 是子节点的第一个 key
separatorKey := children[j].Keys[0]
parent.AddKey(separatorKey)
parent.AddChild(childOffsets[j])
}
// 写入父节点
parentOffset := b.offset
data := parent.Marshal()
_, err := b.file.WriteAt(data, b.offset)
if err != nil {
return nil, nil, err
}
b.offset += BTreeNodeSize
parents = append(parents, parent)
parentOffsets = append(parentOffsets, parentOffset)
}
return parents, parentOffsets, nil
}
// BTreeReader 用于查询 B+Tree (mmap)
type BTreeReader struct {
mmap mmap.MMap
rootOffset int64
}
// NewBTreeReader 创建查询器
func NewBTreeReader(mmap mmap.MMap, rootOffset int64) *BTreeReader {
return &BTreeReader{
mmap: mmap,
rootOffset: rootOffset,
}
}
// Get 查询 key返回数据位置
func (r *BTreeReader) Get(key int64) (dataOffset int64, dataSize int32, found bool) {
if r.rootOffset == 0 {
return 0, 0, false
}
nodeOffset := r.rootOffset
for {
// 读取节点 (零拷贝)
if nodeOffset+BTreeNodeSize > int64(len(r.mmap)) {
return 0, 0, false
}
nodeData := r.mmap[nodeOffset : nodeOffset+BTreeNodeSize]
node := UnmarshalBTree(nodeData)
if node == nil {
return 0, 0, false
}
// 叶子节点
if node.NodeType == BTreeNodeTypeLeaf {
// 二分查找
idx := sort.Search(len(node.Keys), func(i int) bool {
return node.Keys[i] >= key
})
if idx < len(node.Keys) && node.Keys[idx] == key {
return node.DataOffsets[idx], node.DataSizes[idx], true
}
return 0, 0, false
}
// 内部节点,继续向下
// keys[i] 是分隔符children[i] 包含 < keys[i] 的数据
// children[i+1] 包含 >= keys[i] 的数据
idx := sort.Search(len(node.Keys), func(i int) bool {
return node.Keys[i] > key
})
// idx 现在指向第一个 > key 的位置
// 我们应该走 children[idx]
if idx >= len(node.Children) {
idx = len(node.Children) - 1
}
nodeOffset = node.Children[idx]
}
}
// GetAllKeys 获取 B+Tree 中所有的 key按顺序
func (r *BTreeReader) GetAllKeys() []int64 {
if r.rootOffset == 0 {
return nil
}
var keys []int64
r.traverseLeafNodes(r.rootOffset, func(node *BTreeNode) {
keys = append(keys, node.Keys...)
})
// 显式排序以确保返回的 keys 严格有序
// 虽然 B+Tree 构建时应该已经是有序的,但这是一个安全保障
// 特别是在 compaction 后,确保查询结果正确排序
slices.Sort(keys)
return keys
}
// traverseLeafNodes 遍历所有叶子节点
func (r *BTreeReader) traverseLeafNodes(nodeOffset int64, callback func(*BTreeNode)) {
if nodeOffset+BTreeNodeSize > int64(len(r.mmap)) {
return
}
nodeData := r.mmap[nodeOffset : nodeOffset+BTreeNodeSize]
node := UnmarshalBTree(nodeData)
if node == nil {
return
}
if node.NodeType == BTreeNodeTypeLeaf {
// 叶子节点,执行回调
callback(node)
} else {
// 内部节点,递归遍历所有子节点
for _, childOffset := range node.Children {
r.traverseLeafNodes(childOffset, callback)
}
}
}