主要改动: - 重构目录结构:合并子目录到根目录,简化项目结构 - 添加完整的查询 API:支持复杂条件查询、字段选择、游标模式 - 实现 LSM-Tree Compaction:7层结构、Score-based策略、后台异步合并 - 添加 Web UI:基于 Lit 的现代化管理界面,支持数据浏览和 Manifest 查看 - 完善文档:添加 README.md 和 examples/webui/README.md 新增功能: - Query Builder:链式查询 API,支持 Eq/Lt/Gt/In/Between/Contains 等操作符 - Web UI 组件:srdb-app、srdb-table-list、srdb-data-view、srdb-manifest-view 等 - 列选择持久化:自动保存到 localStorage - 刷新按钮:一键刷新当前视图 - 主题切换:深色/浅色主题支持 代码优化: - 使用 Go 1.24 新特性:range 7、min()、maps.Copy()、slices.Sort() - 统一组件命名:所有 Web Components 使用 srdb-* 前缀 - CSS 优化:提取共享样式,减少重复代码 - 清理遗留代码:删除未使用的方法和样式
413 lines
10 KiB
Go
413 lines
10 KiB
Go
package srdb
|
||
|
||
import (
|
||
"encoding/binary"
|
||
"os"
|
||
"slices"
|
||
"sort"
|
||
|
||
"github.com/edsrzf/mmap-go"
|
||
)
|
||
|
||
const (
|
||
BTreeNodeSize = 4096 // 节点大小 (4 KB)
|
||
BTreeOrder = 200 // B+Tree 阶数 (保守估计,叶子节点每个entry 20 bytes)
|
||
BTreeHeaderSize = 32 // 节点头大小
|
||
BTreeNodeTypeInternal = 0 // 内部节点
|
||
BTreeNodeTypeLeaf = 1 // 叶子节点
|
||
)
|
||
|
||
// BTreeNode 表示一个 B+Tree 节点 (4 KB)
|
||
type BTreeNode struct {
|
||
// Header (32 bytes)
|
||
NodeType byte // 0=Internal, 1=Leaf
|
||
KeyCount uint16 // key 数量
|
||
Level byte // 层级 (0=叶子层)
|
||
Reserved [28]byte // 预留字段
|
||
|
||
// Keys (variable, 最多 256 个)
|
||
Keys []int64 // key 数组
|
||
|
||
// Values (variable)
|
||
// Internal Node: 子节点指针
|
||
Children []int64 // 子节点的文件 offset
|
||
|
||
// Leaf Node: 数据位置
|
||
DataOffsets []int64 // 数据块的文件 offset
|
||
DataSizes []int32 // 数据块大小
|
||
}
|
||
|
||
// NewInternalNode 创建内部节点
|
||
func NewInternalNode(level byte) *BTreeNode {
|
||
return &BTreeNode{
|
||
NodeType: BTreeNodeTypeInternal,
|
||
Level: level,
|
||
Keys: make([]int64, 0, BTreeOrder),
|
||
Children: make([]int64, 0, BTreeOrder+1),
|
||
}
|
||
}
|
||
|
||
// NewLeafNode 创建叶子节点
|
||
func NewLeafNode() *BTreeNode {
|
||
return &BTreeNode{
|
||
NodeType: BTreeNodeTypeLeaf,
|
||
Level: 0,
|
||
Keys: make([]int64, 0, BTreeOrder),
|
||
DataOffsets: make([]int64, 0, BTreeOrder),
|
||
DataSizes: make([]int32, 0, BTreeOrder),
|
||
}
|
||
}
|
||
|
||
// Marshal 序列化节点到 4 KB
|
||
func (n *BTreeNode) Marshal() []byte {
|
||
buf := make([]byte, BTreeNodeSize)
|
||
|
||
// 写入 Header (32 bytes)
|
||
buf[0] = n.NodeType
|
||
binary.LittleEndian.PutUint16(buf[1:3], n.KeyCount)
|
||
buf[3] = n.Level
|
||
copy(buf[4:32], n.Reserved[:])
|
||
|
||
// 写入 Keys
|
||
offset := BTreeHeaderSize
|
||
for _, key := range n.Keys {
|
||
if offset+8 > BTreeNodeSize {
|
||
break
|
||
}
|
||
binary.LittleEndian.PutUint64(buf[offset:offset+8], uint64(key))
|
||
offset += 8
|
||
}
|
||
|
||
// 写入 Values
|
||
if n.NodeType == BTreeNodeTypeInternal {
|
||
// Internal Node: 写入子节点指针
|
||
for _, child := range n.Children {
|
||
if offset+8 > BTreeNodeSize {
|
||
break
|
||
}
|
||
binary.LittleEndian.PutUint64(buf[offset:offset+8], uint64(child))
|
||
offset += 8
|
||
}
|
||
} else {
|
||
// Leaf Node: 写入数据位置
|
||
for i := 0; i < len(n.Keys); i++ {
|
||
if offset+12 > BTreeNodeSize {
|
||
break
|
||
}
|
||
binary.LittleEndian.PutUint64(buf[offset:offset+8], uint64(n.DataOffsets[i]))
|
||
offset += 8
|
||
binary.LittleEndian.PutUint32(buf[offset:offset+4], uint32(n.DataSizes[i]))
|
||
offset += 4
|
||
}
|
||
}
|
||
|
||
return buf
|
||
}
|
||
|
||
// UnmarshalBTree 从字节数组反序列化节点
|
||
func UnmarshalBTree(data []byte) *BTreeNode {
|
||
if len(data) < BTreeNodeSize {
|
||
return nil
|
||
}
|
||
|
||
node := &BTreeNode{}
|
||
|
||
// 读取 Header
|
||
node.NodeType = data[0]
|
||
node.KeyCount = binary.LittleEndian.Uint16(data[1:3])
|
||
node.Level = data[3]
|
||
copy(node.Reserved[:], data[4:32])
|
||
|
||
// 读取 Keys
|
||
offset := BTreeHeaderSize
|
||
node.Keys = make([]int64, node.KeyCount)
|
||
for i := 0; i < int(node.KeyCount); i++ {
|
||
if offset+8 > len(data) {
|
||
break
|
||
}
|
||
node.Keys[i] = int64(binary.LittleEndian.Uint64(data[offset : offset+8]))
|
||
offset += 8
|
||
}
|
||
|
||
// 读取 Values
|
||
if node.NodeType == BTreeNodeTypeInternal {
|
||
// Internal Node: 读取子节点指针
|
||
childCount := int(node.KeyCount) + 1
|
||
node.Children = make([]int64, childCount)
|
||
for i := range childCount {
|
||
if offset+8 > len(data) {
|
||
break
|
||
}
|
||
node.Children[i] = int64(binary.LittleEndian.Uint64(data[offset : offset+8]))
|
||
offset += 8
|
||
}
|
||
} else {
|
||
// Leaf Node: 读取数据位置
|
||
node.DataOffsets = make([]int64, node.KeyCount)
|
||
node.DataSizes = make([]int32, node.KeyCount)
|
||
for i := 0; i < int(node.KeyCount); i++ {
|
||
if offset+12 > len(data) {
|
||
break
|
||
}
|
||
node.DataOffsets[i] = int64(binary.LittleEndian.Uint64(data[offset : offset+8]))
|
||
offset += 8
|
||
node.DataSizes[i] = int32(binary.LittleEndian.Uint32(data[offset : offset+4]))
|
||
offset += 4
|
||
}
|
||
}
|
||
|
||
return node
|
||
}
|
||
|
||
// IsFull 检查节点是否已满
|
||
func (n *BTreeNode) IsFull() bool {
|
||
return len(n.Keys) >= BTreeOrder
|
||
}
|
||
|
||
// AddKey 添加 key (仅用于构建)
|
||
func (n *BTreeNode) AddKey(key int64) {
|
||
n.Keys = append(n.Keys, key)
|
||
n.KeyCount = uint16(len(n.Keys))
|
||
}
|
||
|
||
// AddChild 添加子节点 (仅用于内部节点)
|
||
func (n *BTreeNode) AddChild(offset int64) {
|
||
if n.NodeType != BTreeNodeTypeInternal {
|
||
panic("AddChild called on leaf node")
|
||
}
|
||
n.Children = append(n.Children, offset)
|
||
}
|
||
|
||
// AddData 添加数据位置 (仅用于叶子节点)
|
||
func (n *BTreeNode) AddData(key int64, offset int64, size int32) {
|
||
if n.NodeType != BTreeNodeTypeLeaf {
|
||
panic("AddData called on internal node")
|
||
}
|
||
n.Keys = append(n.Keys, key)
|
||
n.DataOffsets = append(n.DataOffsets, offset)
|
||
n.DataSizes = append(n.DataSizes, size)
|
||
n.KeyCount = uint16(len(n.Keys))
|
||
}
|
||
|
||
// BTreeBuilder 从下往上构建 B+Tree
|
||
type BTreeBuilder struct {
|
||
order int // B+Tree 阶数
|
||
file *os.File // 输出文件
|
||
offset int64 // 当前写入位置
|
||
leafNodes []*BTreeNode // 叶子节点列表
|
||
}
|
||
|
||
// NewBTreeBuilder 创建构建器
|
||
func NewBTreeBuilder(file *os.File, startOffset int64) *BTreeBuilder {
|
||
return &BTreeBuilder{
|
||
order: BTreeOrder,
|
||
file: file,
|
||
offset: startOffset,
|
||
leafNodes: make([]*BTreeNode, 0),
|
||
}
|
||
}
|
||
|
||
// Add 添加一个 key-value 对 (数据必须已排序)
|
||
func (b *BTreeBuilder) Add(key int64, dataOffset int64, dataSize int32) error {
|
||
// 获取或创建当前叶子节点
|
||
var leaf *BTreeNode
|
||
if len(b.leafNodes) == 0 || b.leafNodes[len(b.leafNodes)-1].IsFull() {
|
||
// 创建新的叶子节点
|
||
leaf = NewLeafNode()
|
||
b.leafNodes = append(b.leafNodes, leaf)
|
||
} else {
|
||
leaf = b.leafNodes[len(b.leafNodes)-1]
|
||
}
|
||
|
||
// 添加到叶子节点
|
||
leaf.AddData(key, dataOffset, dataSize)
|
||
|
||
return nil
|
||
}
|
||
|
||
// Build 构建完整的 B+Tree,返回根节点的 offset
|
||
func (b *BTreeBuilder) Build() (rootOffset int64, err error) {
|
||
if len(b.leafNodes) == 0 {
|
||
return 0, nil
|
||
}
|
||
|
||
// 1. 写入所有叶子节点,记录它们的 offset
|
||
leafOffsets := make([]int64, len(b.leafNodes))
|
||
for i, leaf := range b.leafNodes {
|
||
leafOffsets[i] = b.offset
|
||
data := leaf.Marshal()
|
||
_, err := b.file.WriteAt(data, b.offset)
|
||
if err != nil {
|
||
return 0, err
|
||
}
|
||
b.offset += BTreeNodeSize
|
||
}
|
||
|
||
// 2. 如果只有一个叶子节点,它就是根
|
||
if len(b.leafNodes) == 1 {
|
||
return leafOffsets[0], nil
|
||
}
|
||
|
||
// 3. 从下往上构建内部节点
|
||
currentLevel := b.leafNodes
|
||
currentOffsets := leafOffsets
|
||
level := 1
|
||
|
||
for len(currentLevel) > 1 {
|
||
nextLevel, nextOffsets, err := b.buildLevel(currentLevel, currentOffsets, level)
|
||
if err != nil {
|
||
return 0, err
|
||
}
|
||
currentLevel = nextLevel
|
||
currentOffsets = nextOffsets
|
||
level++
|
||
}
|
||
|
||
// 4. 返回根节点的 offset
|
||
return currentOffsets[0], nil
|
||
}
|
||
|
||
// buildLevel 构建一层内部节点
|
||
func (b *BTreeBuilder) buildLevel(children []*BTreeNode, childOffsets []int64, level int) ([]*BTreeNode, []int64, error) {
|
||
var parents []*BTreeNode
|
||
var parentOffsets []int64
|
||
|
||
// 每 order 个子节点创建一个父节点
|
||
for i := 0; i < len(children); i += b.order {
|
||
end := min(i+b.order, len(children))
|
||
|
||
// 创建父节点
|
||
parent := NewInternalNode(byte(level))
|
||
|
||
// 添加第一个子节点 (没有对应的 key)
|
||
parent.AddChild(childOffsets[i])
|
||
|
||
// 添加剩余的子节点和分隔 key
|
||
for j := i + 1; j < end; j++ {
|
||
// 分隔 key 是子节点的第一个 key
|
||
separatorKey := children[j].Keys[0]
|
||
parent.AddKey(separatorKey)
|
||
parent.AddChild(childOffsets[j])
|
||
}
|
||
|
||
// 写入父节点
|
||
parentOffset := b.offset
|
||
data := parent.Marshal()
|
||
_, err := b.file.WriteAt(data, b.offset)
|
||
if err != nil {
|
||
return nil, nil, err
|
||
}
|
||
b.offset += BTreeNodeSize
|
||
|
||
parents = append(parents, parent)
|
||
parentOffsets = append(parentOffsets, parentOffset)
|
||
}
|
||
|
||
return parents, parentOffsets, nil
|
||
}
|
||
|
||
// BTreeReader 用于查询 B+Tree (mmap)
|
||
type BTreeReader struct {
|
||
mmap mmap.MMap
|
||
rootOffset int64
|
||
}
|
||
|
||
// NewBTreeReader 创建查询器
|
||
func NewBTreeReader(mmap mmap.MMap, rootOffset int64) *BTreeReader {
|
||
return &BTreeReader{
|
||
mmap: mmap,
|
||
rootOffset: rootOffset,
|
||
}
|
||
}
|
||
|
||
// Get 查询 key,返回数据位置
|
||
func (r *BTreeReader) Get(key int64) (dataOffset int64, dataSize int32, found bool) {
|
||
if r.rootOffset == 0 {
|
||
return 0, 0, false
|
||
}
|
||
|
||
nodeOffset := r.rootOffset
|
||
|
||
for {
|
||
// 读取节点 (零拷贝)
|
||
if nodeOffset+BTreeNodeSize > int64(len(r.mmap)) {
|
||
return 0, 0, false
|
||
}
|
||
|
||
nodeData := r.mmap[nodeOffset : nodeOffset+BTreeNodeSize]
|
||
node := UnmarshalBTree(nodeData)
|
||
|
||
if node == nil {
|
||
return 0, 0, false
|
||
}
|
||
|
||
// 叶子节点
|
||
if node.NodeType == BTreeNodeTypeLeaf {
|
||
// 二分查找
|
||
idx := sort.Search(len(node.Keys), func(i int) bool {
|
||
return node.Keys[i] >= key
|
||
})
|
||
if idx < len(node.Keys) && node.Keys[idx] == key {
|
||
return node.DataOffsets[idx], node.DataSizes[idx], true
|
||
}
|
||
return 0, 0, false
|
||
}
|
||
|
||
// 内部节点,继续向下
|
||
// keys[i] 是分隔符,children[i] 包含 < keys[i] 的数据
|
||
// children[i+1] 包含 >= keys[i] 的数据
|
||
idx := sort.Search(len(node.Keys), func(i int) bool {
|
||
return node.Keys[i] > key
|
||
})
|
||
// idx 现在指向第一个 > key 的位置
|
||
// 我们应该走 children[idx]
|
||
if idx >= len(node.Children) {
|
||
idx = len(node.Children) - 1
|
||
}
|
||
nodeOffset = node.Children[idx]
|
||
}
|
||
}
|
||
|
||
// GetAllKeys 获取 B+Tree 中所有的 key(按顺序)
|
||
func (r *BTreeReader) GetAllKeys() []int64 {
|
||
if r.rootOffset == 0 {
|
||
return nil
|
||
}
|
||
|
||
var keys []int64
|
||
r.traverseLeafNodes(r.rootOffset, func(node *BTreeNode) {
|
||
keys = append(keys, node.Keys...)
|
||
})
|
||
|
||
// 显式排序以确保返回的 keys 严格有序
|
||
// 虽然 B+Tree 构建时应该已经是有序的,但这是一个安全保障
|
||
// 特别是在 compaction 后,确保查询结果正确排序
|
||
slices.Sort(keys)
|
||
|
||
return keys
|
||
}
|
||
|
||
// traverseLeafNodes 遍历所有叶子节点
|
||
func (r *BTreeReader) traverseLeafNodes(nodeOffset int64, callback func(*BTreeNode)) {
|
||
if nodeOffset+BTreeNodeSize > int64(len(r.mmap)) {
|
||
return
|
||
}
|
||
|
||
nodeData := r.mmap[nodeOffset : nodeOffset+BTreeNodeSize]
|
||
node := UnmarshalBTree(nodeData)
|
||
|
||
if node == nil {
|
||
return
|
||
}
|
||
|
||
if node.NodeType == BTreeNodeTypeLeaf {
|
||
// 叶子节点,执行回调
|
||
callback(node)
|
||
} else {
|
||
// 内部节点,递归遍历所有子节点
|
||
for _, childOffset := range node.Children {
|
||
r.traverseLeafNodes(childOffset, callback)
|
||
}
|
||
}
|
||
}
|